roulette/roulette.py
Michael Pilosov 73167f78f4 cleanup
2022-11-26 17:43:22 -07:00

284 lines
8.6 KiB
Python

from typing import List, Dict, Optional
from functools import reduce
from dataclasses import dataclass, field
from random import choice, randint
Bet = Dict[int, float]
SINGLE_BETS = {str(i) for i in range(-1, 37)}
FEASIBLE_MOVES = sorted(
{
*[f"street-{i}" for i in range(1, 14)],
*[f"col-{i}" for i in range(1, 4)],
*[f"corner-{i}-{i+1}-{i+3}-{i+4}" for i in range(1, 33) if (i - 1) % 3 < 2],
*["1-12", "13-24", "25-36", "1-18", "19-36", "even", "odd", "red", "black"],
*["triple-0", "triple-00"],
*SINGLE_BETS,
}
)
ALIASES = {
"reds",
"blacks",
"evens",
"odds",
"first-half",
"last-half",
"second-half",
"first-18",
"last-18",
"second-18",
}
CHIP_VALUES = {0.25, 0.5, 1, 5, 10, 25, 50, 100}
def expectation(bet):
odds = 0
pmnt = 0
return odds * pmnt
# 38 numbers, 6 street bets, 2 half-bets,
# payout grid based on bets placed.
# a street bet is the same as splitting the bet across all the numbers in the group.
# will use a function to distribute / interpret the bets, but it seems like we only need to track the numbers on the wheel.
def init_bet() -> Bet:
D = {i: 0 for i in range(-1, 37)}
return D
def place_bet(bet: Bet, on: int, amount: float):
bet = bet.copy()
bet[on] += amount
return bet
def interpret_bet(on="red", amount=0, bet=Optional[Bet]):
assert (on in FEASIBLE_MOVES) or (
on in ALIASES
), f"Bet `{on}` not understood. Choose from feasible moves:\n {FEASIBLE_MOVES}"
if bet is None:
bet = init_bet()
else:
bet = bet.copy()
REDS = {1, 3, 5, 7, 9, 12, 14, 16, 18, 19, 21, 23, 25, 27, 30, 32, 34, 36}
BLACKS = set(range(37)) - REDS
NUMS = {}
on = on.strip().replace(" ", "-")
div = 18
if on in ("red", "reds"):
NUMS = REDS
if on in ("black", "blacks"):
NUMS = BLACKS
if on in ("odd", "odds"):
NUMS = {i for i in range(1, 37) if i % 2 == 0}
if on in ("even", "evens"):
NUMS = {i for i in range(1, 37) if i % 2}
if on in ("1-18", "first-18", "first-half"):
NUMS = set(range(1, 19))
if on in ("19-36", "last-18", "last-half", "second-half", "second-18"):
NUMS = set(range(19, 37))
if on in ("1-12", "13-24", "25-36"):
low, high = on.split("-")
NUMS = set(range(int(low), int(high) + 1))
div = 12
if on in ["triple-0", "triple-00"]:
NUMS = {0, 1, 2} if on == "triple-0" else {-1, 2, 3}
div = 3
if not NUMS:
other_bet = on.split("-")
if other_bet[0] == "street":
street = int(other_bet[1]) - 1
assert street in list(range(13))
NUMS = {i for i in range(street + 1, street + 4)}
div = 3
elif other_bet[0] == "col":
col = int(other_bet[1]) - 1
assert col in list(range(0, 3))
NUMS = {i for i in range(1, 37) if (i - 1) % 3 == col}
div = 12
elif (
other_bet[0] == "split"
): # TODO: validate choices, for now we disallow these.
num_1, num_2 = int(other_bet[1]), int(other_bet[2])
NUMS = {num_1, num_2}
div = 2
elif other_bet[0] == "corner":
num_1, num_2 = int(other_bet[1]), int(other_bet[2])
num_3, num_4 = int(other_bet[3]), int(other_bet[4])
NUMS = {num_1, num_2, num_3, num_4}
div = 4
else:
try:
NUMS = {int(on)}
div = 1
except ValueError as e:
raise e(
f"Bet `{on}` not understood. Choose from feasible moves:\n {set(range(-1, 37))}"
)
bet = reduce(lambda bet, num: place_bet(bet, num, amount / div), NUMS, bet)
return bet
@dataclass
class Placement:
"""
Defines a bet based on the number of chips and value of each chip.
Args:
num (int): number of chips
amt (float): value of each chip
on (str): bet type
Returns:
Placement: an object representing the placement of a stack of chips on a particular bet type.
"""
num: int
amt: float
on: str
def __post_init__(self):
assert (self.on in FEASIBLE_MOVES) or (
self.on in ALIASES
), f"Bet `{self.on}` not understood. Choose from feasible moves:\n {FEASIBLE_MOVES}"
@property
def value(self):
"""
Returns the value of the bet.
"""
return self.num * self.amt
def place_bet(self, bet=None):
"""
Places a bet on the wheel based on the bet type.
"""
return interpret_bet(self.on, self.num * self.amt, bet)
# for two bets of structure Dict[int, float], iterate through all the keys and add up the values, returning a new dict.
def combine_bets(bet_1, bet_2):
return {k: bet_1.get(k, 0) + bet_2.get(k, 0) for k in set(bet_1) | set(bet_2)}
# for a list of Placements, call the place_bet method on each one and combine the results using reduce and combine_bets, starting with an empty dictionary as the initial argument
def place_bets(placements):
return reduce(
lambda bet, placement: combine_bets(bet, placement.place_bet()), placements, {}
)
@dataclass
class Strategy:
budget: float = 200
placements: List[Placement] = field(default_factory=list)
def __repr__(self) -> str:
return f"Strategy(budget={self.budget}, value={self.value}, placements={self.placements})"
@property
def value(self):
return sum([p.value for p in self.placements])
@classmethod
def generate_random(cls, budget) -> "Strategy":
placements = []
initial_budget = budget
while budget > 0:
amt = choice([v for v in CHIP_VALUES if v <= budget])
# guarantees the max bet cannot exceed budget:
num = randint(1, budget // amt)
# select random bet type
# todo: consider if this is the logic you want...
if randint(0, 1) == 0:
on = choice(list(FEASIBLE_MOVES))
else:
on = choice(list(SINGLE_BETS))
on = choice(
list(FEASIBLE_MOVES)
) # todo: make a parameter, allow for just single bets.
placement = Placement(num, amt, on)
placements.append(placement)
budget -= placement.value
return Strategy(budget=initial_budget, placements=placements)
def print_all(self) -> None:
for p in self.placements:
print(p)
def get_bet(self):
return place_bets(self.placements)
@dataclass
class Player:
budget: float
strategy: Strategy
def simulate_random_strategy(min_num_games=1, total_budget=200):
strategy_budget = total_budget // min_num_games
return Strategy.generate_random(strategy_budget)
# given BUDGET, generate a bunch of random players, each with a random strategy, and return a list of players
def generate_players(num_players=10, min_num_games=1, total_budget=200):
return [
Player(
total_budget,
simulate_random_strategy(
min_num_games=min_num_games, total_budget=total_budget
),
)
for _ in range(num_players)
]
# simulate a game of roulette, picking a random integer from -1 to 37, taking the players as inputs and returning their expected winnings
def simulate_game(players):
# pick a random number
num = randint(-1, 36)
# print("WINNER:", num)
# for each player, place their bets on the wheel
bets = [p.strategy.get_bet() for p in players]
# for each player, calculate their winnings
winnings = [36 * bet.get(num, 0) for bet in bets]
# for each player, calculate their expected winnings
return winnings
# simulate multiple games, reducing each player's budget by the amount of their bet and adding the amount of their winnings
def simulate_games(players, num_games=10):
losers = []
for g in range(num_games):
if not players:
break
print(f"GAME {g}")
winnings = simulate_game(players)
new_losers = []
for i, p in enumerate(players):
p.budget -= p.strategy.value
p.budget += winnings[
i
] # TODO: reinvestment logic goes here. maybe add "reinvest" as a player attribute?
# if a player runs out of money to keep using their strategy,
# remove them from the list of players and add them to the list of losers
if p.budget < p.strategy.value:
new_losers.append(p)
for l in new_losers:
players.remove(l)
losers.extend(new_losers)
return players + losers