from typing import List, Dict, Optional from functools import reduce from dataclasses import dataclass, field from random import choice, randint Bet = Dict[int, float] SINGLE_BETS = {str(i) for i in range(-1, 37)} FEASIBLE_MOVES = sorted( { *[f"street-{i}" for i in range(1, 14)], *[f"col-{i}" for i in range(1, 4)], *[f"corner-{i}-{i+1}-{i+3}-{i+4}" for i in range(1, 33) if (i - 1) % 3 < 2], *["1-12", "13-24", "25-36", "1-18", "19-36", "even", "odd", "red", "black"], *["triple-0", "triple-00"], *SINGLE_BETS, } ) ALIASES = { "reds", "blacks", "evens", "odds", "first-half", "last-half", "second-half", "first-18", "last-18", "second-18", } CHIP_VALUES = {0.25, 0.5, 1, 5, 10, 25, 50, 100} def expectation(bet): odds = 0 pmnt = 0 return odds * pmnt # 38 numbers, 6 street bets, 2 half-bets, # payout grid based on bets placed. # a street bet is the same as splitting the bet across all the numbers in the group. # will use a function to distribute / interpret the bets, but it seems like we only need to track the numbers on the wheel. def init_bet() -> Bet: D = {i: 0 for i in range(-1, 37)} return D def place_bet(bet: Bet, on: int, amount: float): bet = bet.copy() bet[on] += amount return bet def interpret_bet(on="red", amount=0, bet=Optional[Bet]): assert (on in FEASIBLE_MOVES) or ( on in ALIASES ), f"Bet `{on}` not understood. Choose from feasible moves:\n {FEASIBLE_MOVES}" if bet is None: bet = init_bet() else: bet = bet.copy() REDS = {1, 3, 5, 7, 9, 12, 14, 16, 18, 19, 21, 23, 25, 27, 30, 32, 34, 36} BLACKS = set(range(37)) - REDS NUMS = {} on = on.strip().replace(" ", "-") div = 18 if on in ("red", "reds"): NUMS = REDS if on in ("black", "blacks"): NUMS = BLACKS if on in ("odd", "odds"): NUMS = {i for i in range(1, 37) if i % 2 == 0} if on in ("even", "evens"): NUMS = {i for i in range(1, 37) if i % 2} if on in ("1-18", "first-18", "first-half"): NUMS = set(range(1, 19)) if on in ("19-36", "last-18", "last-half", "second-half", "second-18"): NUMS = set(range(19, 37)) if on in ("1-12", "13-24", "25-36"): low, high = on.split("-") NUMS = set(range(int(low), int(high) + 1)) div = 12 if on in ["triple-0", "triple-00"]: NUMS = {0, 1, 2} if on == "triple-0" else {-1, 2, 3} div = 3 if not NUMS: other_bet = on.split("-") if other_bet[0] == "street": street = int(other_bet[1]) - 1 assert street in list(range(13)) NUMS = {i for i in range(street + 1, street + 4)} div = 3 elif other_bet[0] == "col": col = int(other_bet[1]) - 1 assert col in list(range(0, 3)) NUMS = {i for i in range(1, 37) if (i - 1) % 3 == col} div = 12 elif ( other_bet[0] == "split" ): # TODO: validate choices, for now we disallow these. num_1, num_2 = int(other_bet[1]), int(other_bet[2]) NUMS = {num_1, num_2} div = 2 elif other_bet[0] == "corner": num_1, num_2 = int(other_bet[1]), int(other_bet[2]) num_3, num_4 = int(other_bet[3]), int(other_bet[4]) NUMS = {num_1, num_2, num_3, num_4} div = 4 else: try: NUMS = {int(on)} div = 1 except ValueError as e: raise e( f"Bet `{on}` not understood. Choose from feasible moves:\n {set(range(-1, 37))}" ) bet = reduce(lambda bet, num: place_bet(bet, num, amount / div), NUMS, bet) return bet @dataclass class Placement: """ Defines a bet based on the number of chips and value of each chip. Args: num (int): number of chips amt (float): value of each chip on (str): bet type Returns: Placement: an object representing the placement of a stack of chips on a particular bet type. """ num: int amt: float on: str def __post_init__(self): assert (self.on in FEASIBLE_MOVES) or ( self.on in ALIASES ), f"Bet `{self.on}` not understood. Choose from feasible moves:\n {FEASIBLE_MOVES}" @property def value(self): """ Returns the value of the bet. """ return self.num * self.amt def place_bet(self, bet=None): """ Places a bet on the wheel based on the bet type. """ return interpret_bet(self.on, self.num * self.amt, bet) # for two bets of structure Dict[int, float], iterate through all the keys and add up the values, returning a new dict. def combine_bets(bet_1, bet_2): return {k: bet_1.get(k, 0) + bet_2.get(k, 0) for k in set(bet_1) | set(bet_2)} # for a list of Placements, call the place_bet method on each one and combine the results using reduce and combine_bets, starting with an empty dictionary as the initial argument def place_bets(placements): return reduce( lambda bet, placement: combine_bets(bet, placement.place_bet()), placements, {} ) @dataclass class Strategy: budget: float = 200 placements: List[Placement] = field(default_factory=list) def __repr__(self) -> str: return f"Strategy(budget={self.budget}, value={self.value}, placements={self.placements})" @property def value(self): return sum([p.value for p in self.placements]) @classmethod def generate_random(cls, budget) -> "Strategy": placements = [] initial_budget = budget while budget > 0: amt = choice([v for v in CHIP_VALUES if v <= budget]) # guarantees the max bet cannot exceed budget: num = randint(1, budget // amt) # select random bet type # todo: consider if this is the logic you want... if randint(0, 1) == 0: on = choice(list(FEASIBLE_MOVES)) else: on = choice(list(SINGLE_BETS)) on = choice( list(FEASIBLE_MOVES) ) # todo: make a parameter, allow for just single bets. placement = Placement(num, amt, on) placements.append(placement) budget -= placement.value return Strategy(budget=initial_budget, placements=placements) def print_all(self) -> None: for p in self.placements: print(p) def get_bet(self): return place_bets(self.placements) @dataclass class Player: budget: float strategy: Strategy def simulate_random_strategy(min_num_games=1, total_budget=200): strategy_budget = total_budget // min_num_games return Strategy.generate_random(strategy_budget) # given BUDGET, generate a bunch of random players, each with a random strategy, and return a list of players def generate_players(num_players=10, min_num_games=1, total_budget=200): return [ Player( total_budget, simulate_random_strategy( min_num_games=min_num_games, total_budget=total_budget ), ) for _ in range(num_players) ] # simulate a game of roulette, picking a random integer from -1 to 37, taking the players as inputs and returning their expected winnings def simulate_game(players): # pick a random number num = randint(-1, 36) # print("WINNER:", num) # for each player, place their bets on the wheel bets = [p.strategy.get_bet() for p in players] # for each player, calculate their winnings winnings = [36 * bet.get(num, 0) for bet in bets] # for each player, calculate their expected winnings return winnings # simulate multiple games, reducing each player's budget by the amount of their bet and adding the amount of their winnings def simulate_games(players, num_games=10): losers = [] for g in range(num_games): if not players: break print(f"GAME {g}") winnings = simulate_game(players) new_losers = [] for i, p in enumerate(players): p.budget -= p.strategy.value p.budget += winnings[ i ] # TODO: reinvestment logic goes here. maybe add "reinvest" as a player attribute? # if a player runs out of money to keep using their strategy, # remove them from the list of players and add them to the list of losers if p.budget < p.strategy.value: new_losers.append(p) for l in new_losers: players.remove(l) losers.extend(new_losers) return players + losers