roulette/pyroulette/roulette.py

569 lines
16 KiB
Python

from __future__ import annotations
from dataclasses import dataclass, field
from functools import reduce
from random import choice, randint
from statistics import mean, stdev
from typing import Dict, List, Optional
import json
# define the class Bet which inherits from Dict[int, float] and define it's __add__ method as calling combine_bets
# Bet = Dict[int, float]
def init_spread() -> Dict[int, float]:
"""
Initializes a bet with all individual placements set to 0.
Returns
-------
Bet
A dictionary representing the bet.
"""
D = {i: 0 for i in range(-1, 37)}
return D
# for two bets of structure Dict[int, float], iterate through all the keys and add up the values, returning a new dict.
def combine_bets(bet_1: Bet, bet_2: Bet) -> Bet:
"""
Combines two bets into a single bet.
Parameters
----------
bet_1 : Bet
The first bet to combine.
bet_2 : Bet
The second bet to combine.
Returns
-------
Bet
The combined bet.
"""
# TODO: can remove the default 0.
return Bet({k: bet_1[k] + bet_2[k] for k in set(bet_1) | set(bet_2)})
@dataclass
class Bet:
"""A class for representing a bet."""
spread: Dict[int, float] = field(default_factory=init_spread)
@property
def __nonzeros__(self) -> Dict[int, float]:
nonzeros = dict(filter(lambda x: x[1] > 0, self.spread.items()))
nonzeros = {k: round(v, 2) for k, v in nonzeros.items()}
if -1 in nonzeros:
nonzeros["00"] = nonzeros.pop(-1)
return nonzeros
def __repr__(self) -> str:
"""Return a string representation of the bet."""
return f"Bet({self.__nonzeros__})"
# define the appearance when using print
def __str__(self) -> str:
return json.dumps(self.__nonzeros__, indent=4)
def __dict__(self) -> Dict[int, float]:
"""Return the bet as a dictionary."""
return self.spread
def __add__(self, other: Bet) -> Bet:
"""Combine two bets."""
return combine_bets(self, other)
def __setitem__(self, __name: int, __value: float) -> None:
"""Set the value of a placement."""
self.spread[__name] = __value
def __getitem__(self, __name: int) -> float:
"""Get the value of a placement."""
return self.spread.get(__name, 0)
def copy(self) -> Bet:
"""Return a copy of the bet."""
return Bet(self.spread.copy())
def __iter__(self):
return iter(self.spread.keys())
def get(self, __name: int) -> float:
return self.spread.get(__name, 0)
SINGLE_BETS = {str(i) for i in range(-1, 37)}
FEASIBLE_MOVES = sorted(
{
*[f"street-{i}" for i in range(1, 14)],
*[f"col-{i}" for i in range(1, 4)],
*[f"corner-{i}-{i+1}-{i+3}-{i+4}" for i in range(1, 33) if (i - 1) % 3 < 2],
*["1-12", "13-24", "25-36", "1-18", "19-36", "even", "odd", "red", "black"],
*["triple-0", "triple-00"],
*SINGLE_BETS,
}
)
ALIASES = {
"reds",
"blacks",
"evens",
"odds",
"first-half",
"last-half",
"second-half",
"first-18",
"last-18",
"second-18",
}
CHIP_VALUES = {0.25, 0.5, 1, 5, 10, 25, 50, 100}
def expected(bet: Bet) -> float:
"""
Returns the expected value of a bet.
Parameters
----------
bet : Bet
The bet to calculate the expected value of.
Returns
-------
float
The expected value of the bet.
"""
bets = list(bet.spread.values())
cond_bets = filter(lambda x: x > 0, bets)
amt = sum(bets)
payout = amt * 36 / 38
print(
f"bet: {amt:.2f}, expected: {payout:.2f}: {payout/amt:2.4f} with std {stdev(bets*36)} mean win of {36*mean(cond_bets)} {sum(filter(lambda x: x > 0, bets))}/38 times."
)
return payout
# 38 numbers, 6 street bets, 2 half-bets,
# payout grid based on bets placed.
# a street bet is the same as splitting the bet across all the numbers in the group.
# will use a function to distribute / interpret the bets, but it seems like we only need to track the numbers on the wheel.
def place_bet(bet: Bet, on: int, amount: float) -> Bet:
"""
Places a bet on a number.
Parameters
----------
bet : Bet
The bet to place.
on : int
The number to bet on.
amount : float
The amount to bet.
Returns
-------
Bet
A dictionary representing the bet with the new bet placed.
"""
bet = bet.copy()
bet[on] += amount
return bet
def interpret_bet(on="red", amount=0, bet=Optional[Bet]) -> Bet:
"""
Interprets a bet and returns a dictionary representing the bet.
Parameters
----------
on : str
The type of bet to place.
amount : float
The amount to bet.
bet : Bet
The bet to add to.
(default is None, which creates a new bet)
Returns
-------
Bet
A dictionary representing the bet.
"""
assert (on in FEASIBLE_MOVES) or (
on in ALIASES
), f"Bet `{on}` not understood. Choose from feasible moves:\n {FEASIBLE_MOVES}"
if bet is None:
bet = Bet()
else:
bet = bet.copy()
REDS = {1, 3, 5, 7, 9, 12, 14, 16, 18, 19, 21, 23, 25, 27, 30, 32, 34, 36}
BLACKS = set(range(37)) - REDS
NUMS = {}
on = on.strip().replace(" ", "-")
div = 18
if on in ("red", "reds"):
NUMS = REDS
if on in ("black", "blacks"):
NUMS = BLACKS
if on in ("odd", "odds"):
NUMS = {i for i in range(1, 37) if i % 2 == 0}
if on in ("even", "evens"):
NUMS = {i for i in range(1, 37) if i % 2}
if on in ("1-18", "first-18", "first-half"):
NUMS = set(range(1, 19))
if on in ("19-36", "last-18", "last-half", "second-half", "second-18"):
NUMS = set(range(19, 37))
if on in ("1-12", "13-24", "25-36"):
low, high = on.split("-")
NUMS = set(range(int(low), int(high) + 1))
div = 12
if on in ["triple-0", "triple-00"]:
NUMS = {0, 1, 2} if on == "triple-0" else {-1, 2, 3}
div = 3
if not NUMS:
other_bet = on.split("-")
if other_bet[0] == "street":
street = int(other_bet[1]) - 1
assert street in list(range(13))
NUMS = {i for i in range(street + 1, street + 4)}
div = 3
elif other_bet[0] == "col":
col = int(other_bet[1]) - 1
assert col in list(range(0, 3))
NUMS = {i for i in range(1, 37) if (i - 1) % 3 == col}
div = 12
elif (
other_bet[0] == "split"
): # TODO: validate choices, for now we disallow these.
num_1, num_2 = int(other_bet[1]), int(other_bet[2])
NUMS = {num_1, num_2}
div = 2
elif other_bet[0] == "corner":
num_1, num_2 = int(other_bet[1]), int(other_bet[2])
num_3, num_4 = int(other_bet[3]), int(other_bet[4])
NUMS = {num_1, num_2, num_3, num_4}
div = 4
else:
try:
NUMS = {int(on)}
div = 1
except ValueError as e:
raise e(
f"Bet `{on}` not understood. Choose from feasible moves:\n {set(range(-1, 37))}"
)
bet = reduce(lambda bet, num: place_bet(bet, num, amount / div), NUMS, bet)
return bet
@dataclass
class Placement:
"""
Defines a bet based on the number of chips and value of each chip.
Attributes
----------
num : int
The number of chips to bet.
amt : float
The value of each chip.
on : str
The type of bet to place for which the chips are being used.
"""
num: int
amt: float
on: str
def __post_init__(self):
assert (self.on in FEASIBLE_MOVES) or (
self.on in ALIASES
), f"Bet `{self.on}` not understood. Choose from feasible moves:\n {FEASIBLE_MOVES}"
def __gt__(self, other):
return self.amt > other.amt
def __add__(self, other):
assert self.on == other.on, "Cannot add placements of different types."
assert self.amt == other.amt, "Cannot add placements of different values."
return Placement(self.num + other.num, self.amt, self.on)
def __eq__(self, other):
return self.amt == other.amt and self.on == other.on
@property
def value(self):
"""
Returns the value of the bet.
"""
return self.num * self.amt
def bet(self, bet=None) -> Bet:
"""
Places a bet on the wheel based on the bet type.
"""
return interpret_bet(self.on, self.num * self.amt, bet)
# for a list of Placements, call the place_bet method on each one and combine the results using reduce and combine_bets, starting with an empty dictionary as the initial argument
@dataclass
class Strategy:
"""
A strategy is a list of placements, each of which is a bet on a particular number or group of numbers.
Attributes
----------
budget : float
The amount of money to spend on the strategy.
placements : List[Placement]
A list of placements, each of which is a bet on a particular number or group of numbers.
"""
budget: float = 200
placements: List[Placement] = field(default_factory=list)
def __repr__(self) -> str:
return f"Strategy(budget={self.budget}, value={self.value}, placements={self.placements})"
@property
def value(self):
return sum([p.value for p in self.placements])
@classmethod
def generate_random(cls, budget: float, max_placements: int = 10) -> Strategy:
"""
Generates a random strategy.
Parameters
----------
budget : float
The amount of money to spend on the strategy.
max_placements : int, optional
The maximum number of placements to include in the strategy.
(default is 10)
Returns
-------
Strategy
A random strategy.
"""
placements = []
initial_budget = budget
num_placements = 0
while (budget > 0) and (num_placements < max_placements):
amt = choice([v for v in CHIP_VALUES if v <= budget])
# guarantees the max bet cannot exceed budget:
# 4 is the max number of chips because after that you might as well use a higher chip value.
num = randint(1, min(budget // amt, 4))
# select random bet type
# TODO: consider if this is the logic you want... really let's define a player's profile / psychological disposition.
# if randint(0, 1) == 0:
# on = choice(list(FEASIBLE_MOVES))
# else:
# on = choice(list(SINGLE_BETS))
on = choice(
list(FEASIBLE_MOVES)
) # TODO: make a parameter, allow for just single bets.
placement = Placement(num, amt, on)
placements.append(placement)
budget -= placement.value
num_placements += 1
return Strategy(budget=initial_budget, placements=placements)
def print_all(self) -> None:
for p in self.placements:
print(p)
def get_bet(self):
return self.place_bets(self.placements)
def get_placements(self):
return self.placements
@staticmethod
def place_bets(placements: List[Placement]) -> Bet:
"""
Places a list of bets on the wheel given a list of Placements.
Parameters
----------
placements : List[Placement]
A list of Placements to place on the wheel.
Returns
-------
Bet
A dictionary representing the bet.
"""
return reduce(
lambda bet, placement: combine_bets(bet, placement.bet()),
placements,
Bet(),
)
@dataclass
class Player:
"""
A player of the game.
Attributes
----------
budget : float
The amount of money the player starts with.
strategy : Strategy
The strategy the player uses to place bets.
id: int
The id of the player.
(default: random int of length 8)
wallet : float
The amount of money the player has left.
(default: budget)
"""
budget: float
strategy: Strategy
id: int = field(default_factory=lambda: randint(1e8, 1e9 - 1))
def __post_init__(self):
self.wallet: float = self.budget
def __repr__(self) -> str:
return f"Player(id={self.id}, budget={self.budget}, wallet={self.wallet}, strategy={sorted(self.strategy.placements)}, strategy_cost={self.strategy.value}, strategy_budget={self.strategy.budget}, num_placements={len(self.strategy.placements)}"
def __lt__(self, other):
return self.id < other.id
def simulate_random_strategy(min_num_games=1, total_budget=200) -> Strategy:
"""
Simulates a random strategy based on the minimum number of games that
the player wants to play and the total budget that the player has.
Parameters
----------
min_num_games : int, optional
The minimum number of games that the player wants to play.
(default is 1)
total_budget : float, optional
The total budget that the player has.
(default is 200)
Returns
-------
"""
strategy_budget = total_budget // min_num_games
return Strategy.generate_random(strategy_budget)
# given BUDGET, generate a bunch of random players, each with a random strategy, and return a list of players
def generate_players(num_players=10, min_num_games=1, total_budget=200) -> List[Player]:
"""
Generates a list of players with random strategies.
Parameters
----------
num_players : int
The number of players to generate.
min_num_games : int
The minimum number of games each player will play using their strategy and budget.
total_budget : float
The total budget for each player.
Returns
-------
List[Player]
"""
players = [
Player(
budget=total_budget,
strategy=simulate_random_strategy(
min_num_games=min_num_games, total_budget=total_budget
),
)
for i in range(num_players)
]
# if a player has placements with identical amt and on values, combine them into a single placement
for player in players:
placements = []
for placement in player.strategy.placements:
if placement in placements:
placements[placements.index(placement)] += placement
else:
placements.append(placement)
player.strategy.placements = placements
return players
# simulate a game of roulette, picking a random integer from -1 to 37, taking the players as inputs and returning their expected winnings
def simulate_game(players, verbose=False) -> List[float]:
"""
Simulates a single game of roulette.
Parameters
----------
players : List[Player]
The players in the game.
verbose : bool
Whether to print the winning number.
Returns
-------
List[float]
"""
# pick a random number
num = randint(-1, 36)
if verbose:
print("WINNER:", num)
# for each player, place their bets on the wheel
bets = [p.strategy.get_bet() for p in players]
# for each player, calculate their winnings
winnings = [36 * bet.get(num, 0) for bet in bets]
# for each player, calculate their expected winnings
return winnings
# simulate multiple games, reducing each player's budget by the amount of their bet and adding the amount of their winnings
def simulate_games(players, num_games=10):
losers = []
for g in range(num_games):
if not players:
break
# print(f"GAME {g}")
winnings = simulate_game(players)
new_losers = []
for i, p in enumerate(players):
p.wallet -= p.strategy.value
p.wallet += winnings[
i
] # TODO: reinvestment logic goes here. maybe add "reinvest" as a player attribute?
# if a player runs out of money to keep using their strategy,
# remove them from the list of players and add them to the list of losers
if p.wallet < p.strategy.value:
new_losers.append(p)
for l in new_losers:
players.remove(l)
losers.extend(new_losers)
return players + losers