refactor, improvements, documentation!

This commit is contained in:
Michael Pilosov 2022-11-26 19:22:48 -07:00
parent 73167f78f4
commit d08e362ecd
2 changed files with 253 additions and 65 deletions

74
app.py
View File

@ -8,8 +8,9 @@ from roulette import (
Strategy,
Placement,
FEASIBLE_MOVES,
expected,
)
from random import choice, randint
from random import choice, randint, seed
if __name__ == "__main__":
@ -29,44 +30,33 @@ if __name__ == "__main__":
bet = interpret_bet("19-36", 14, bet)
# print(bet[21])
from statistics import stdev, mean
def expected(bet) -> float:
bets = list(bet.values())
cond_bets = filter(lambda x: x > 0, bets)
amt = sum(bets)
payout = amt * 36 / 38
print(
f"bet: {amt:.2f}, expected: {payout:.2f}: {payout/amt:2.4f} with std {stdev(bets*36)} mean win of {36*mean(cond_bets)} {sum(filter(lambda x: x > 0, bets))}/38 times."
)
return payout
print("bond")
print(bet)
print(expected(bet))
print()
print("unknown")
bet = init_bet()
bet = interpret_bet("1-12", 15, bet)
bet = interpret_bet("13-24", 15, bet)
bet = interpret_bet("corner-26-27-29-30", 5, bet)
bet = interpret_bet("corner-32-33-35-36", 5, bet)
print(bet)
print(expected(bet))
print()
print("singles")
bet = init_bet()
bet = place_bet(bet, 21, 40)
# bet = place_bet(bet, 1, 1)
print(expected(bet))
print()
print("stupid")
bet = init_bet()
bet = interpret_bet("odd", 18, bet)
bet = interpret_bet("even", 18, bet)
# bet = place_bet(bet, -1, 1)
# bet = place_bet(bet, 0, 1)
print(expected(bet))
# print("unknown")
# bet = init_bet()
# bet = interpret_bet("1-12", 15, bet)
# bet = interpret_bet("13-24", 15, bet)
# bet = interpret_bet("corner-26-27-29-30", 5, bet)
# bet = interpret_bet("corner-32-33-35-36", 5, bet)
# print(bet)
# print(expected(bet))
# print()
# print("singles")
# bet = init_bet()
# bet = place_bet(bet, 21, 40)
# # bet = place_bet(bet, 1, 1)
# print(expected(bet))
# print()
# print("stupid")
# bet = init_bet()
# bet = interpret_bet("odd", 18, bet)
# bet = interpret_bet("even", 18, bet)
# # bet = place_bet(bet, -1, 1)
# # bet = place_bet(bet, 0, 1)
# print(expected(bet))
# min_games = randint(1, 10)
# print(min_games, Player(200, simulate_random_strategy(min_num_games=min_games, total_budget=200)))
@ -91,9 +81,12 @@ if __name__ == "__main__":
# print(bet)
# set a random seed
seed(42)
# generate players and print them out
players = generate_players(num_players=3, min_num_games=4, total_budget=200)
players[0] = Player(
players[0] = player = Player(
id=0,
budget=200.0,
strategy=Strategy(
budget=50,
@ -106,13 +99,18 @@ if __name__ == "__main__":
],
),
)
for p in players:
for p in sorted(players):
print(p, "\n")
print("======================")
print("SIMULATING GAMES")
# simulate 10 games
players = simulate_games(players, num_games=100)
# seed(59)
players = simulate_games(players, num_games=100000)
for p in players:
for p in sorted(players):
print(p, "\n")
print(player.strategy.get_bet())
# use sum to add up a list of lists

View File

@ -2,6 +2,7 @@ from typing import List, Dict, Optional
from functools import reduce
from dataclasses import dataclass, field
from random import choice, randint
from statistics import stdev, mean
Bet = Dict[int, float]
@ -36,10 +37,28 @@ ALIASES = {
CHIP_VALUES = {0.25, 0.5, 1, 5, 10, 25, 50, 100}
def expectation(bet):
odds = 0
pmnt = 0
return odds * pmnt
def expected(bet) -> float:
"""
Returns the expected value of a bet.
Parameters
----------
bet : Bet
The bet to calculate the expected value of.
Returns
-------
float
The expected value of the bet.
"""
bets = list(bet.values())
cond_bets = filter(lambda x: x > 0, bets)
amt = sum(bets)
payout = amt * 36 / 38
print(
f"bet: {amt:.2f}, expected: {payout:.2f}: {payout/amt:2.4f} with std {stdev(bets*36)} mean win of {36*mean(cond_bets)} {sum(filter(lambda x: x > 0, bets))}/38 times."
)
return payout
# 38 numbers, 6 street bets, 2 half-bets,
@ -51,17 +70,60 @@ def expectation(bet):
def init_bet() -> Bet:
"""
Initializes a bet with all individual placements set to 0.
Returns
-------
Bet
A dictionary representing the bet.
"""
D = {i: 0 for i in range(-1, 37)}
return D
def place_bet(bet: Bet, on: int, amount: float):
"""
Places a bet on a number.
Parameters
----------
bet : Bet
The bet to place.
on : int
The number to bet on.
amount : float
The amount to bet.
Returns
-------
Bet
A dictionary representing the bet with the new bet placed.
"""
bet = bet.copy()
bet[on] += amount
return bet
def interpret_bet(on="red", amount=0, bet=Optional[Bet]):
def interpret_bet(on="red", amount=0, bet=Optional[Bet]) -> Bet:
"""
Interprets a bet and returns a dictionary representing the bet.
Parameters
----------
on : str
The type of bet to place.
amount : float
The amount to bet.
bet : Bet
The bet to add to.
(default is None, which creates a new bet)
Returns
-------
Bet
A dictionary representing the bet.
"""
assert (on in FEASIBLE_MOVES) or (
on in ALIASES
), f"Bet `{on}` not understood. Choose from feasible moves:\n {FEASIBLE_MOVES}"
@ -135,13 +197,15 @@ class Placement:
"""
Defines a bet based on the number of chips and value of each chip.
Args:
num (int): number of chips
amt (float): value of each chip
on (str): bet type
Attributes
----------
num : int
The number of chips to bet.
amt : float
The value of each chip.
on : str
The type of bet to place for which the chips are being used.
Returns:
Placement: an object representing the placement of a stack of chips on a particular bet type.
"""
num: int
@ -153,6 +217,17 @@ class Placement:
self.on in ALIASES
), f"Bet `{self.on}` not understood. Choose from feasible moves:\n {FEASIBLE_MOVES}"
def __gt__(self, other):
return self.amt > other.amt
def __add__(self, other):
assert self.on == other.on, "Cannot add placements of different types."
assert self.amt == other.amt, "Cannot add placements of different values."
return Placement(self.num + other.num, self.amt, self.on)
def __eq__(self, other):
return self.amt == other.amt and self.on == other.on
@property
def value(self):
"""
@ -160,7 +235,7 @@ class Placement:
"""
return self.num * self.amt
def place_bet(self, bet=None):
def place_bet(self, bet=None) -> Bet:
"""
Places a bet on the wheel based on the bet type.
"""
@ -168,12 +243,40 @@ class Placement:
# for two bets of structure Dict[int, float], iterate through all the keys and add up the values, returning a new dict.
def combine_bets(bet_1, bet_2):
def combine_bets(bet_1: Bet, bet_2: Bet) -> Bet:
"""
Combines two bets into a single bet.
Parameters
----------
bet_1 : Bet
The first bet to combine.
bet_2 : Bet
The second bet to combine.
Returns
-------
Bet
The combined bet.
"""
return {k: bet_1.get(k, 0) + bet_2.get(k, 0) for k in set(bet_1) | set(bet_2)}
# for a list of Placements, call the place_bet method on each one and combine the results using reduce and combine_bets, starting with an empty dictionary as the initial argument
def place_bets(placements):
def place_bets(placements: List[Placement]) -> Bet:
"""
Places a list of bets on the wheel given a list of Placements.
Parameters
----------
placements : List[Placement]
A list of Placements to place on the wheel.
Returns
-------
Bet
A dictionary representing the bet.
"""
return reduce(
lambda bet, placement: combine_bets(bet, placement.place_bet()), placements, {}
)
@ -181,6 +284,18 @@ def place_bets(placements):
@dataclass
class Strategy:
"""
A strategy is a list of placements, each of which is a bet on a particular number or group of numbers.
Attributes
----------
budget : float
The amount of money to spend on the strategy.
placements : List[Placement]
A list of placements, each of which is a bet on a particular number or group of numbers.
"""
budget: float = 200
placements: List[Placement] = field(default_factory=list)
@ -195,10 +310,13 @@ class Strategy:
def generate_random(cls, budget) -> "Strategy":
placements = []
initial_budget = budget
while budget > 0:
num_placements = 0
max_placements = 10
while (budget > 0) and (num_placements < max_placements):
amt = choice([v for v in CHIP_VALUES if v <= budget])
# guarantees the max bet cannot exceed budget:
num = randint(1, budget // amt)
# 4 is the max number of chips because after that you might as well use a higher chip value.
num = randint(1, min(budget // amt, 4))
# select random bet type
# todo: consider if this is the logic you want...
if randint(0, 1) == 0:
@ -211,6 +329,8 @@ class Strategy:
placement = Placement(num, amt, on)
placements.append(placement)
budget -= placement.value
num_placements += 1
return Strategy(budget=initial_budget, placements=placements)
def print_all(self) -> None:
@ -223,8 +343,35 @@ class Strategy:
@dataclass
class Player:
"""
A player of the game.
Attributes
----------
budget : float
The amount of money the player starts with.
strategy : Strategy
The strategy the player uses to place bets.
id: int
The id of the player.
(default: random int of length 8)
wallet : float
The amount of money the player has left.
(default: budget)
"""
budget: float
strategy: Strategy
id: int = field(default_factory=lambda: randint(1e8, 1e9 - 1))
def __post_init__(self):
self.wallet: float = self.budget
def __repr__(self) -> str:
return f"Player(id={self.id}, budget={self.budget}, wallet={self.wallet}, strategy={sorted(self.strategy.placements)}, strategy_cost={self.strategy.value}, strategy_budget={self.strategy.budget}, num_placements={len(self.strategy.placements)}"
def __lt__(self, other):
return self.id < other.id
def simulate_random_strategy(min_num_games=1, total_budget=200):
@ -233,23 +380,66 @@ def simulate_random_strategy(min_num_games=1, total_budget=200):
# given BUDGET, generate a bunch of random players, each with a random strategy, and return a list of players
def generate_players(num_players=10, min_num_games=1, total_budget=200):
return [
def generate_players(num_players=10, min_num_games=1, total_budget=200) -> List[Player]:
"""
Generates a list of players with random strategies.
Parameters
----------
num_players : int
The number of players to generate.
min_num_games : int
The minimum number of games each player will play using their strategy and budget.
total_budget : float
The total budget for each player.
Returns
-------
List[Player]
"""
players = [
Player(
total_budget,
simulate_random_strategy(
budget=total_budget,
strategy=simulate_random_strategy(
min_num_games=min_num_games, total_budget=total_budget
),
)
for _ in range(num_players)
for i in range(num_players)
]
# if a player has placements with identical amt and on values, combine them into a single placement
for player in players:
placements = []
for placement in player.strategy.placements:
if placement in placements:
placements[placements.index(placement)] += placement
else:
placements.append(placement)
player.strategy.placements = placements
return players
# simulate a game of roulette, picking a random integer from -1 to 37, taking the players as inputs and returning their expected winnings
def simulate_game(players):
def simulate_game(players, verbose=False) -> List[float]:
"""
Simulates a single game of roulette.
Parameters
----------
players : List[Player]
The players in the game.
verbose : bool
Whether to print the winning number.
Returns
-------
List[float]
"""
# pick a random number
num = randint(-1, 36)
# print("WINNER:", num)
if verbose:
print("WINNER:", num)
# for each player, place their bets on the wheel
bets = [p.strategy.get_bet() for p in players]
# for each player, calculate their winnings
@ -264,17 +454,17 @@ def simulate_games(players, num_games=10):
for g in range(num_games):
if not players:
break
print(f"GAME {g}")
# print(f"GAME {g}")
winnings = simulate_game(players)
new_losers = []
for i, p in enumerate(players):
p.budget -= p.strategy.value
p.budget += winnings[
p.wallet -= p.strategy.value
p.wallet += winnings[
i
] # TODO: reinvestment logic goes here. maybe add "reinvest" as a player attribute?
# if a player runs out of money to keep using their strategy,
# remove them from the list of players and add them to the list of losers
if p.budget < p.strategy.value:
if p.wallet < p.strategy.value:
new_losers.append(p)
for l in new_losers:
players.remove(l)